If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-80x-9=0
a = 9; b = -80; c = -9;
Δ = b2-4ac
Δ = -802-4·9·(-9)
Δ = 6724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6724}=82$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-82}{2*9}=\frac{-2}{18} =-1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+82}{2*9}=\frac{162}{18} =9 $
| -x+14-5x=2 | | A+6=2e | | 1/2m-2=0 | | 28/5x+39/4=-6 | | 265-u=146 | | 6-1/4x-1/2x=-3 | | 104=-v+173 | | y=6.5(.85)^-2 | | -9=3n-9 | | -7x-5=75+x | | 2/3(x+)=10 | | 17n=-85 | | X+x2+2x=-2 | | 0.5(11.75)=x-9 | | x^2+16=15x | | 5x-7x+50=5x+36 | | 4(2x+7)=-10+22 | | 5x-7x+50=5x=36 | | u-9.5=5.12 | | 17=2-(x+6) | | 5x-7x+50=36 | | -6+v=-20 | | w-9.58=6.3 | | u-5.4=9.6 | | 2w+7=3w+3 | | 7x+17=9x+23 | | 3x+2(8)=22 | | Y=100+0.5y+50 | | 4x+26=130 | | 8x-43=10 | | -3/5x+1/5=7/20 | | 15/18k=11/18 |